Synthesis of ($4 S^{*}, 5 S^{*}$)-diphenyl-1,3,4,5-tetrahydro-2H-[1]benzopyrano [4,3- d] pyrimidine-2-thiones by base-catalysed cyclocondensation of (E)-3-benzylideneflavanones with thiourea, and determination of their monoacetylation site

 Ayhan Elmalic
${ }^{\text {a Department }}$ of Chemistry, Jadavpur University, Kolkata - 700 032, India
${ }^{b}$ Department of Chemistry, University College of Science, Calcutta University, Kolkata 700 009, India
${ }^{c}$ Department of Engineering Physics, Faculty of Engineering, University of Ankara, 06100-Baselver, Ankara, Turkey

${ }^{\text {d Present address: Department of Chemistry, Chandidas Mahavidyalaya, Khujutipara 731215, District-Birbhum, West Bengal, India }}$
Base-catalysed cyclocondensation of (E)-3-benzylideneflavanones with thiourea has been found to be highly stereoselective, producing ($4 S^{*}, 5 S^{*}$)-diphenyl-1,3,4,5-tetrahydro-2H-[1]benzopyrano[4,3- d]pyrimidine-2-thiones in high yield, the structure of one of which has been determined by X-ray crystallography. Just like 4,6-diaryl-3, 4-dihydropyrimidine-2(1H)-thiones, the said products also undergo monoacetylation on treatment with $\mathrm{Ac}_{2} \mathrm{O}$. The site of acetylation in both of these classes of compound are established by detailed NMR spectral studies.

Keywords: flavanones, thiourea, fused [1]benzopyrans, fused pyrimidinethiones

Among the available reports on base-catalysed cyclocondensation of chalcones (1) with thiourea, two ${ }^{1,2}$ state that the products are 4,6-diaryl-5,6-dihydropyrimidine-2(1H)thiones (2), while a third ${ }^{3}$ claims that they are 4,6-diaryl-3,4-dihydropyrimidine- $2(1 \mathrm{H})$-thiones (3). The spectral data of the products, however, gave convincing evidence that the last structure is actually correct. ${ }^{3}$ (E)-3-Benzylideneflavanones (4), the synthesis and reactions of which we have recently studied ${ }^{4-8}$, possess a part structure which is similar to the chalcones (1). So we endeavoured to synthesise a new type of fused heterocycle possessing a flavonoid and a pyrimidine moiety, both endowed with interesting physiological activities ${ }^{9-12}$, by cyclocondensation of 4 with thiourea. Since the target system contains two stereogenic centres, our interest was also to determine the configuration of the major / only product of the reaction (which may be $\mathbf{5}$ or its diastereomer). Furthermore, on acetylation 3 gives a monoacetyl derivative. Without giving any concrete chemical or spectral evidence,

Al-Hajjar et al. ${ }^{3}$ assigned the structure $\mathbf{6}$ to this derivative. So, in connection with synthesis of the said new heterocycles, we intended to observe the outcome of their acetylation reaction and to ascertain the acetylation site(s). The results of these studies are presented in this paper.

Results and discussion

When each of the (E)-3-benzylideneflavanones 4a-d was treated with thiourea in methanol in presence of sodium methoxide, a single product was obtained in very good yield. Analytical and spectral data of the products from 4a-d (see Experimental) definitely showed that one diastereomeric $d l$ pair of the desired cyclocondensation product was formed in all cases. The reaction was thus highly stereoselective. All the products formed good quality crystals from methanol. An X-ray crystallographic analysis of the product from 4a established its stereostructure as 5a. The other compounds were therefore

1

2

3

4

a: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$;
b: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OMe}$
d: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cl} ; \quad \mathbf{d}: \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

6

7

[^0]assigned as $\mathbf{5 b} \mathbf{- d}$. A view of the solid state conformation of $\mathbf{5 a}$ is given in Fig. 1. It is expected that the formation of 5 from 4 follows the same mechanistic path(s) as that of $\mathbf{3}$ from $1 .^{3}$

In accordance to our expectation, $\mathbf{5 a}$ formed a monoacetyl derivative on treatment with $\mathrm{Ac}_{2} \mathrm{O}\left(100^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The structure of this monoacetyl derivative (a viscous liquid) was established to be $\mathbf{8}$ by first determining the site of acetylation of 4,6-diphenyl-3,4-dihydropyrimidine-2(1H)-thione (3a, $\mathbf{3}$ with $\mathrm{Ar}=\mathrm{Ar}^{\prime}=\mathrm{Ph}$) by detailed NMR spectral studies and then by appropriate comparison as discussed below.

Between the two possible structures 6 and 7 for the monoacetyl derivatives of $\mathbf{3}$, the former was chosen by AlHajjar et al. ${ }^{3}$ on the basis that there was no substituent effect on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the COCH_{3} moiety of these compounds. We felt that the rationale for this choice was not firmly based. So we prepared the monoacetyl derivative of 3a and studied its routine ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as well as the COSY $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right.$, one bond) and homodecoupled spectra. The most significant observation in the COSY spectrum was the correlation: $\delta 5.91\left({ }^{1} \mathrm{H}\right)-\delta 105.54\left({ }^{13} \mathrm{C}\right)$ and $\delta 6.32\left({ }^{1} \mathrm{H}\right)-\delta$ $54.20\left({ }^{13} \mathrm{C}\right)$. So the broad doublet at $\delta 5.91$ can be assigned to the olefinic proton. Irradiation at $\delta 8.94$ (the position of the $\mathrm{N}-\mathrm{H}$ signal) made the $\delta 5.91$ doublet sharper and at the same time more intense than the $\delta 6.32$ doublet. This clearly indicated that the $\mathrm{N}-\mathrm{H}$ and the olefinic proton interact in an allylic type of coupling which is possible only with the structure 7 .

Al-Hajjar et al. ${ }^{3}$ reported the appearance of $\mathrm{H}-4$ and $\mathrm{H}-5$ of 3a at $\delta 5.20$ as a multiplet. In the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum, however, these two protons appeared as two separate multiplets at $\delta 5.21$ and 5.30 which could be assigned by by observing the changes on irradiating at the positions of the N-H absorptions. Thus, irradiation at $\delta 6.80$ changed the δ 5.30 signal to a doublet, and irradiation at $\delta 7.69$ decreased the multiplicity of the $\delta 5.21$ signal. So the $\delta 5.30$ signal was due to H-4 and the $\delta 5.21$ signal to $\mathrm{H}-5$. The downfield shift of $\mathrm{H}-4$ of $3 \mathbf{a}$ due to acetylation was therefore 1.02 ppm . This $\Delta \delta$ value was utilised to determine the site of acetylation of 5a.

In $\mathrm{CDCl}_{3} \mathbf{5 a}$ showed signals for four nonaromatic protons at $\delta 4.71$ (br.s), 5.41 (s), 6.76 (br.s, N-H) and 7.94 (br.s, N-H). Decoupling experiments showed that among these signals the first and the third were due to the $>\mathrm{CH}-\mathrm{NH}-$ moiety of the molecule. It is evident from the positions of the proton signals of the monoacetyl derivative of $\mathbf{5 a}$ in $\mathbf{C D C l}_{3}$ that on acetylation the $\delta 4.71$ signal shifted to either $\delta 5.78$ or 5.87 (the assignments for $\mathrm{H}-4$ and $\mathrm{H}-5$ could not be made with certainty). This corresponds to a downfield shift of 1.07 or 1.16 ppm for $\mathrm{H}-4$, confirming the structure $\mathbf{8}$ for the monoacetyl derivative. The alternative structure 9 would not be expected to show downfield shift of such a magnitude.

So both 3 and 5 undergo acetylation at the thioamido nitrogen, not at the enethioamido nitrogen.

3a

8

Fig. 1 ORTEP view of compound $\mathbf{5 a}$.

Experimental

Melting points were recorded on a Köfler block. IR spectra were recorded in CHCl_{3} or KBr on a Perkin-Elmer 297 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$ on Bruker DPX-300 (300 MHz), Bruker AM-300L (300.13 MHz) and Varian Unity Plus $\left(\mathrm{U}^{+}\right) 400(400 \mathrm{MHz})$ spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO- d_{6} or CDCl_{3} using the above instruments at 75 or 100 MHz . EI mass spectra were recorded on JEOL JMS D-300 and Shimadzu QP-1000 spectrometers.

Analytical samples were routinely dried in vacuo at room temperature. Column and thin layer chromatographies were carried out using silica gel (100-200 mesh, Tara Chemicals, Calcutta) and silica gel G (Qualigens Fine Chemicals, Mumbai), respectively. Petrol had the boiling point range $60-80^{\circ} \mathrm{C}$.

4,5-Diaryl-1,3,4,5-tetrahydro-2H-[1]benzopyrano-[4,3-d]pyrimidine-2-thiones by condensation of (E)-3-benzylideneflavanones with thiourea; general procedure
A mixture of thiourea (1 mmol) and sodium methoxide [prepared from sodium (230 mg) and dry methanol $(10 \mathrm{ml})$] in dry methanol (60 ml) was stirred for 15 minutes. To this mixture the benzylideneflavanone (1 mmol) was added in three equal portions over 10 minutes. The resulting mixture was stirred at room temperature for 6 h and then poured onto ice and the solid thus obtained was filtered off, washed with water, dried, and then crystallised from methanol. The yields, melting points and analytical and spectral data of the compounds $\mathbf{5 a - d}$ were as follows.
4,5-Diphenyl compound 5a: yield 92%, m.p. $194-195^{\circ} \mathrm{C}$. IR: $v_{\max }$ (KBr): 3240-3180 (N-H), $1175(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.71$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.41(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.76\left(1 \mathrm{H}, \mathrm{s}\right.$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$, $\left.\mathrm{N}-\mathrm{H}_{\mathrm{a}}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.03(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{H}-9)$, 7.19-7.39 (12H, m, Ar-H) and $7.94\left(1 \mathrm{H}, \mathrm{s}\right.$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$, N-Hb). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $)_{6}$) $\delta 4.51(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$, $6.72(1 \mathrm{H}$, br.d, $J=8.1 \mathrm{~Hz}, \mathrm{H}-7), 6.95(1 \mathrm{H}$, br.t, $J=7.5 \mathrm{~Hz}, \mathrm{H}-9), 7.18$ (1 H , br.t, $J=7.8 \mathrm{~Hz}, \mathrm{H}-8$), $7.29-7.46$ ($10 \mathrm{H}, \mathrm{m}$, Ar-H), 7.85 (1 H , br.d, $J=7.8 \mathrm{~Hz}, \mathrm{H}-10), 9.21\left(1 \mathrm{H}\right.$, br.s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{b}}\right)$ and $10.26\left(1 \mathrm{H}, \mathrm{s}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{a}}\right)$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$: C, 74.55 ; H, 4.90; N, 7.56. Found: C, 74.51 ; H, 4.85 ; N, 7.33%.

4-p-Anisyl-5-phenyl compound $\mathbf{5 b}$: yield 95%, m.p. $236-238^{\circ} \mathrm{C}$. IR: $\nu_{\text {max }}(\mathrm{KBr}): 3220(\mathrm{~N}-\mathrm{H}), 1188(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 3.75$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.43(1 \mathrm{H}$, br.s, H-4), $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.71(1 \mathrm{H}$, br.d, $J=7.6 \mathrm{~Hz}, \mathrm{H}-7), 6.93(1 \mathrm{H}, \mathrm{dt}, J=6.6 \mathrm{~Hz}, \mathrm{H}-9), 6.97(2 \mathrm{H}$, pattern resembles a pair of triplets ${ }^{13}, J=6.6 \mathrm{~Hz}$ and 2.8 or $1.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$), $7.16(1 \mathrm{H}, \mathrm{dt}, J=6.6$ and $1.2 \mathrm{~Hz}, \mathrm{H}-7), 7.20(2 \mathrm{H}$ pattern resembles a pair of triplets ${ }^{13}$), $J=6.6 \mathrm{~Hz}$ and 1.7 or $\left.2.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.33-7.36(5 \mathrm{H}, \mathrm{m}$, Ar-H), $7.83(1 \mathrm{H}, \mathrm{dd}, J=8$ and $1.2 \mathrm{~Hz}, \mathrm{H}-10), 9.19(1 \mathrm{H}, \mathrm{s}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{b}}\right)$ and $10.26\left(1 \mathrm{H}, \mathrm{s}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{a}}\right)$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, $75.35 ; \mathrm{H}, 5.28$; N, 7.32. Found: C, 75.87 ; H, 5.18; N, 7.32\%.

4-p-Chlorophenyl-5-phenyl compound 5 c: yield 85%, m.p. 208-210 ${ }^{\circ} \mathrm{C}$. IR: $v_{\text {max }}(\mathrm{KBr}): 3220(\mathrm{~N}-\mathrm{H}), 1185(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 4.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.73(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=8.0 \mathrm{~Hz}$, H-7), $6.94(1 \mathrm{H}$, br.t, $J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 7.17(1 \mathrm{H}$, br.t, $J=8.0 \mathrm{~Hz}, \mathrm{H}-8)$, $7.30-7.43(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.85(1 \mathrm{H}$, br.d, $J=8.0 \mathrm{~Hz}, \mathrm{H}-10), 9.28(1 \mathrm{H}$, s , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{b}}\right)$ and $10.36(1 \mathrm{H}, \mathrm{s}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{a}}$). ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 55.13(\mathrm{C}-4), 76.01(\mathrm{C}-5), 105.91$ (C-4a), 116.16 (C-10a), 117.20 (C-7), 121.90 (C-9), 123.25 (C-10), 125.87 (C-1"), 128.22 (C-3",5"), 129.53 (C-2",6"), 129.57 (C-2’, $\left.6^{\prime}\right)$, 129.72 (C-3',5'), 129.84 (C-8), 131.21 (C-4'), 133.68 (C-4"), 138.50 (C-1'), 141.27 (C-10b), 152.63 (C-6a) and 175.44 (C=S). EIMS: m/z

406, $404\left(\mathrm{M}^{+}\right)$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 68.21 ; \mathrm{H}, 4.24 ; \mathrm{N}, 6.91$. Found: C, 68.49; H, 3.98; N, 6.43\%.

9-Methyl-4,5-diphenyl compound 5d: yield 89%, m.p. $220-222{ }^{\circ} \mathrm{C}$. IR: $v_{\max }(\mathrm{KBr}): 3220(\mathrm{~N}-\mathrm{H}), 1170(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.51(1 \mathrm{H}$, br.s, $\mathrm{H}-4), 5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.60(1 \mathrm{H}$, br.d, $J=8.1 \mathrm{~Hz}, \mathrm{H}-7), 6.98(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and $1.5 \mathrm{~Hz}, \mathrm{H}-8), 7.27-7.45(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-10), 9.20(1 \mathrm{H}$, br.s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{b}}\right)$ and $10.19\left(1 \mathrm{H}, \mathrm{s}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}_{\mathrm{a}}\right) \cdot{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta 20.16\left(\mathrm{CH}_{3}\right), 55.31(\mathrm{C}-4), 75.38(\mathrm{C}-5), 105.61$ (C-4a), 115.17 (C-10a), 116.11 (C-7), 122.96 (C-10), 124.87 (C-1"), 126.93 (C-2",6"), 127.48 (C-3",5"), 128.37 (C-8), 128.80 (C-2',6'), 128.99 (C-3',5'), 129.06 (C-4"), 130.01 (C-4'), 130.67 (C-9), 137.97 (C-1'), 141.81 (C-10b), 149.66 (C-6a), and 174.72 (C=S). EIMS: m/z (rel. intensity) 384 (64.4), 307 (100, [M-Ph] ${ }^{+}$), 278 (26.7), 248 (33.7), 219 (15.1), 191 (17.2), 165 (14.1), 115 (28.3), 106 (34.7), 91 (33.4) and 77 (35.8, Ph^{+}). Calc. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.96 ; \mathrm{H}, 5.25 ; \mathrm{N}, 7.28$. Found: C, 74.92; H, 5.17; N, 6.99 \%.

3,4-Dihydro-4,6-diphenylpyrimidine-2(1H)-thione (3a): This was prepared by the method of Al-Hajjar et al. ${ }^{3}$ Yield 81%, m.p. 152-154 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{3}{ }^{153-154}{ }^{\circ} \mathrm{C}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.30$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 6.80\left(1 \mathrm{H}\right.$, br.s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}\right), 7.22-$ $7.52(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and 7.69 (br.s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}\right)$.

General procedure for acetylation of 3a/5a: The thione 3a/5a (1 g) was heated with acetic anhydride (1.5 ml) on a boiling water bath for 1 h . After cooling, the reaction mixture was poured into crushed ice $(100 \mathrm{~g})$ and extracted with chloroform $(3 \times 20 \mathrm{ml})$. The chloroform extract was washed, dried (anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. Chromatography of the concentrate over silica gel gave the pure product.

3-Acetyl-3,4-dihydro-4,6-diphenylpyrimidine-2(1H)-thione (7a): acetylation product of 3a. Yield 75%, m.p. $152-154{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 153-154$ $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.80(3 \mathrm{H}, \mathrm{s}), 5.91(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 6.32$ $(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.27-7.50(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.94(1 \mathrm{H}$, br.s, NH). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.51\left(\mathrm{COCH}_{3}\right), 54.20(\mathrm{C}-4), 105.54(\mathrm{C}-5)$, 125.41 (two carbons, mp), 126.56 (two carbons, mp), 127.95 (mp), 128.68 (two carbons, mp), 128.98 (two carbons, mp), 129.70 (mp), $132.07(\mathrm{np}), 135.67(\mathrm{np}), 139.19(\mathrm{C}-6), 173.56(\mathrm{C}-2)$ and 178.78 $\left(\mathrm{COCH}_{3}\right)$ [mp: monoprotonated, np: nonprotonated].

Compound 8, acetylation product of 5a: Yield 56%, viscous liquid. IR: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right): 3400(\mathrm{~N}-\mathrm{H}), 1160(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5 / \mathrm{H}-4), 5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4 / \mathrm{H}-5)$, $6.83(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and $1.2 \mathrm{~Hz}, \mathrm{H}-7), 6.99(1 \mathrm{H}, \mathrm{dt}, J=8.4$ and 1.2 $\mathrm{Hz}, \mathrm{H}-9), 7.19-7.44(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.68(1 \mathrm{H}$, br.s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{N}-\mathrm{H}\right)$.
X-ray structure determination
X-ray data collection was carried out on an Enraf-Nonius CAD-4 diffractometer ${ }^{14}$ using a single crystal with dimension $0.20 \times 0.15 \times$ $0.10 \mathrm{~mm}^{3}$ with a graphite monochromatised MoK_{α} radiation $(\lambda=$ $0.71073 \AA$). Experimental conditions are summarised in Table 1. Precise unit cell dimensions were determined by least-squares refinement on the setting angles of 25 reflections ($3.45^{\circ} \leq \theta \leq 13.23^{\circ}$) carefully centred on the diffractometer. The standard reflections (13 $0,211,112$) were measured every 7200 s and the orientation of the crystal was checked after every 600 reflections. A total of 5158 reflections was recorded, with Miller indices $h_{\min }=-19, h_{\max }=17$, $k_{\min }=0, k_{\max }=12, l_{\min }=0, l_{\max }=23$. Data reduction and corrections for absorption and decomposition were achieved using the Nonius Diffractometer Control Software. ${ }^{14}$ The structure was solved by SHELXS-97 ${ }^{15}$ and refined with SHELXL-97. ${ }^{16}$ The positions of the H atoms bonded to C atoms were calculated (C-H distance $0.96 \AA$), and refined using a riding model, and H atom displacement parameters were restricted to be $1.2 \mathrm{U}_{\mathrm{eq}}$ of the parent atom.

The authors thank the Authorities of IICB, Kolkata and RSIC, CDRI, Lucknow for NMR and mass spectral measurements. Financial assistance from UGC, New Delhi and the Authorities of Jadavpur University is gratefully acknowledged.

Table 1 Crystallographic data for compound 5a

Molecular formula	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$
$\mathrm{f}_{\mathrm{w}}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	370.45
Space group	$\mathrm{P}_{1} / \mathrm{n}$
$a=16.338(3) \AA$	$\alpha=90^{\circ}$
$b=8.723(3) \AA$	
$c=18.012(3) \AA$	$\beta=114.237(12)^{\circ}$
Vol $\left.\AA^{\circ}\right]$	$\gamma=90^{\circ}$
Z	$2341(1)$
$D_{\text {calc }}\left(\mathrm{g} . \mathrm{cm}^{-3}\right)$	4
μ [cm $\left.{ }^{-1}\right]$	1.051
Index ranges	0.150
	$-19<=h<=17$
Reflections collected	$0<=k<=12$
Independent reflections	$0<=/<=23$
Data / restraints $/$ parameters	5158
Goodness-of-fit on F^{2}	$4344[R(\mathrm{int})=0.023]$
Final R indices [l>2 σ (I)]	$4344 / 0 / 245$
Largest diff. peak and hole	1.079

Received 13 October 2003; accepted 19 March 2004 Paper 03/2160

References

1 A. Sammour, M.L. Selim, M.M. Nour El-Deen and M. Abd-El-Halim, U.A.R. J. Chem., 1970, 13, 7.

2 S. Batra and S. Sharma, Indian J. Chem., 1990, 29B, 1051.
3 F.H. Al-Hajjar, Y.A. Al-Farkh and H.S. Hamoud, Can. J. Chem., 1979, 57, 2734.
4 M.G. Dhara, U.K. Mallik and A.K. Mallik, Ind. J. Chem., 1996, 35B, 1214.
5 M.G. Dhara, S.K. Dey and A.K. Mallik, Tetrahedron Lett., 1996, 37, 8001.
6 A.K. Mallik, M.G. Dhara and F. Chattopadhayay, Ind. J. Chem., 1998, 37B, 1164.

7 S.P. Dey and A.K. Mallik, Indian J. Chem., 1999, 38B, 400.
8 A.K. Mallik and F. Chattopadhayay, Ind. J. Chem., 1999, 38B, 889.
9 J. Farte, J.M. Kuhnel, G. Chapuis, Y. Rolland, G. Lewin and M.A. Schwaller, J. Med. Chem., 1999, 42, 478.

10 H. Tanaka, M.M. Stohlmeyer, T.J. Wandless and L.P. Taylor, Tetrahedron Lett., 2000, 41, 9735 and references cited therein.
11 F.A.A. van Acker, J.A. Hageman, G.R.M.M. Haenen, W.J.F. van der Vijgh, A. Bast and W.M.P.B. Menge, J. Med. Chem., 2000, 43, 3752.
12 D.J. Brown, in Comprehensive Heterocyclic Chemistry, eds. A.R. Katritzky and C.W. Rees, Pergamon Press, Oxford, 1984, Vol. 3, p. 150.
13 J.R. Dyer, Application of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India Pvt. Ltd., New Delhi, 1984, p. 110.
14 Enraf-Nonius diffractometer control software, Release 5.1, Enraf-Nonius, Delft, Netherlands, 1993.
15 G.M. Sheldrick, SHELXS-97, Program for the solution of crystal structures, University of Göttingen, Germany, 1997.
16 G.M. Sheldrick, SHELXL-97, Program for the refinement of crystal structures, University of Göttingen, Germany, 1997.

[^0]: * Correspondence.

